Class J2SE14ReadWriteLock

  • All Implemented Interfaces:
    ReadWriteLock, java.io.Serializable

    public class J2SE14ReadWriteLock
    extends java.lang.Object
    implements ReadWriteLock, java.io.Serializable
    An implementation of LockFactory that has been derived from backport-util-concurrent.

    An implementation of ReadWriteLock supporting similar semantics to ReentrantLock.

    This class has the following properties:

    • Acquisition order

      The order of entry to the read and write lock is unspecified, subject to reentrancy constraints. A nonfair lock that is continously contended may indefinitely postpone one or more reader or writer threads, but will normally have higher throughput than a fair lock.

      DEPARTURE FROM java.util.concurrent: this implementation impose a writer-preferrence and thus its acquisition order may be different than in java.util.concurrent.

    • Reentrancy

      This lock allows both readers and writers to reacquire read or write locks in the style of a ReentrantLock. Non-reentrant readers are not allowed until all write locks held by the writing thread have been released.

      Additionally, a writer can acquire the read lock, but not vice-versa. Among other applications, reentrancy can be useful when write locks are held during calls or callbacks to methods that perform reads under read locks. If a reader tries to acquire the write lock it will never succeed.

    • Lock downgrading

      Reentrancy also allows downgrading from the write lock to a read lock, by acquiring the write lock, then the read lock and then releasing the write lock. However, upgrading from a read lock to the write lock is not possible.

    • Interruption of lock acquisition

      The read lock and write lock both support interruption during lock acquisition.

    • Condition support

      The write lock provides a Condition implementation that behaves in the same way, with respect to the write lock, as the Condition implementation provided by ReentrantLock#newCondition does for ReentrantLock. This Condition can, of course, only be used with the write lock.

      The read lock does not support a Condition and readLock().newCondition() throws UnsupportedOperationException.

    • Instrumentation

      This class supports methods to determine whether locks are held or contended. These methods are designed for monitoring system state, not for synchronization control.

    Serialization of this class behaves in the same way as built-in locks: a deserialized lock is in the unlocked state, regardless of its state when serialized.

    Sample usages. Here is a code sketch showing how to exploit reentrancy to perform lock downgrading after updating a cache (exception handling is elided for simplicity):

     class CachedData {
       Object data;
       volatile boolean cacheValid;
       ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
    
       void processCachedData() {
         rwl.readLock().lock();
         if (!cacheValid) {
            // Must release read lock before acquiring write lock
            rwl.readLock().unlock();
            rwl.writeLock().lock();
            // Recheck state because another thread might have acquired
            //   write lock and changed state before we did.
            if (!cacheValid) {
              data = ...
              cacheValid = true;
            }
            // Downgrade by acquiring read lock before releasing write lock
            rwl.readLock().lock();
            rwl.writeLock().unlock(); // Unlock write, still hold read
         }
    
         use(data);
         rwl.readLock().unlock();
       }
     }
     
    ReentrantReadWriteLocks can be used to improve concurrency in some uses of some kinds of Collections. This is typically worthwhile only when the collections are expected to be large, accessed by more reader threads than writer threads, and entail operations with overhead that outweighs synchronization overhead. For example, here is a class using a TreeMap that is expected to be large and concurrently accessed.
    
     class RWDictionary {
        private final Map<String, Data> m = new TreeMap<String, Data>();
        private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
        private final Lock r = rwl.readLock();
        private final Lock w = rwl.writeLock();
    
        public Data get(String key) {
            r.lock();
            try { return m.get(key); }
            finally { r.unlock(); }
        }
        public String[] allKeys() {
            r.lock();
            try { return m.keySet().toArray(); }
            finally { r.unlock(); }
        }
        public Data put(String key, Data value) {
            w.lock();
            try { return m.put(key, value); }
            finally { w.unlock(); }
        }
        public void clear() {
            w.lock();
            try { m.clear(); }
            finally { w.unlock(); }
        }
     }

    Implementation Notes

    This lock supports a maximum of 65535 recursive write locks and 65535 read locks. Attempts to exceed these limits result in Error throws from locking methods.

    Since:
    1.5
    Author:
    Doug Lea
    See Also:
    Serialized Form
    • Constructor Summary

      Constructors 
      Constructor Description
      J2SE14ReadWriteLock()
      Creates a new ReentrantReadWriteLock with default (nonfair) ordering properties.
    • Method Summary

      All Methods Instance Methods Concrete Methods 
      Modifier and Type Method Description
      protected java.lang.Thread getOwner()
      Returns the thread that currently owns the write lock, or null if not owned.
      int getQueueLength()
      Returns an estimate of the number of threads waiting to acquire either the read or write lock.
      int getReadHoldCount()
      Queries the number of reentrant read holds on this lock by the current thread.
      int getReadLockCount()
      Queries the number of read locks held for this lock.
      int getWriteHoldCount()
      Queries the number of reentrant write holds on this lock by the current thread.
      boolean hasQueuedThreads()
      Queries whether any threads are waiting to acquire the read or write lock.
      boolean isFair()
      Returns true if this lock has fairness set true.
      boolean isWriteLocked()
      Queries if the write lock is held by any thread.
      boolean isWriteLockedByCurrentThread()
      Queries if the write lock is held by the current thread.
      Lock readLock()
      Return the lock used for reading.
      java.lang.String toString()
      Returns a string identifying this lock, as well as its lock state.
      Lock writeLock()
      Return the lock used for writing.
      • Methods inherited from class java.lang.Object

        clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
    • Constructor Detail

      • J2SE14ReadWriteLock

        public J2SE14ReadWriteLock()
        Creates a new ReentrantReadWriteLock with default (nonfair) ordering properties.
    • Method Detail

      • isFair

        public final boolean isFair()
        Returns true if this lock has fairness set true.
        Returns:
        true if this lock has fairness set true
      • getOwner

        protected java.lang.Thread getOwner()
        Returns the thread that currently owns the write lock, or null if not owned. When this method is called by a thread that is not the owner, the return value reflects a best-effort approximation of current lock status. For example, the owner may be momentarily null even if there are threads trying to acquire the lock but have not yet done so. This method is designed to facilitate construction of subclasses that provide more extensive lock monitoring facilities.
        Returns:
        the owner, or null if not owned
      • getReadLockCount

        public int getReadLockCount()
        Queries the number of read locks held for this lock. This method is designed for use in monitoring system state, not for synchronization control.
        Returns:
        the number of read locks held.
      • isWriteLocked

        public boolean isWriteLocked()
        Queries if the write lock is held by any thread. This method is designed for use in monitoring system state, not for synchronization control.
        Returns:
        true if any thread holds the write lock and false otherwise
      • isWriteLockedByCurrentThread

        public boolean isWriteLockedByCurrentThread()
        Queries if the write lock is held by the current thread.
        Returns:
        true if the current thread holds the write lock and false otherwise
      • getWriteHoldCount

        public int getWriteHoldCount()
        Queries the number of reentrant write holds on this lock by the current thread. A writer thread has a hold on a lock for each lock action that is not matched by an unlock action.
        Returns:
        the number of holds on the write lock by the current thread, or zero if the write lock is not held by the current thread
      • getReadHoldCount

        public int getReadHoldCount()
        Queries the number of reentrant read holds on this lock by the current thread. A reader thread has a hold on a lock for each lock action that is not matched by an unlock action.
        Returns:
        the number of holds on the read lock by the current thread, or zero if the read lock is not held by the current thread
        Since:
        1.6
      • hasQueuedThreads

        public final boolean hasQueuedThreads()
        Queries whether any threads are waiting to acquire the read or write lock. Note that because cancellations may occur at any time, a true return does not guarantee that any other thread will ever acquire a lock. This method is designed primarily for use in monitoring of the system state.
        Returns:
        true if there may be other threads waiting to acquire the lock
      • getQueueLength

        public final int getQueueLength()
        Returns an estimate of the number of threads waiting to acquire either the read or write lock. The value is only an estimate because the number of threads may change dynamically while this method traverses internal data structures. This method is designed for use in monitoring of the system state, not for synchronization control.
        Returns:
        the estimated number of threads waiting for this lock
      • toString

        public java.lang.String toString()
        Returns a string identifying this lock, as well as its lock state. The state, in brackets, includes the String "Write locks =" followed by the number of reentrantly held write locks, and the String "Read locks =" followed by the number of held read locks.
        Overrides:
        toString in class java.lang.Object
        Returns:
        a string identifying this lock, as well as its lock state